\begin{tabbing} ma{-}rename(${\it rx}$;${\it ra}$;${\it rt}$;$M$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=mk{-}ma(fpf{-}rename(IdDeq;${\it rx}$;1of($M$));\+ \\[0ex]fpf{-}rename(KindDeq;$\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);1of(2of($M$))); \\[0ex]fpf{-}rename(IdDeq;${\it rx}$;1of(2of(2of($M$)))); \\[0ex]fpf{-}rename(IdDeq;${\it ra}$;$\lambda$$f$,$s$,$v$. $f$(($s$$\,\circ\,$${\it rx}$),$v$) o 1of(2of(2of(2of($M$))))); \\[0ex]f\=pf{-}rename(product{-}deq(Knd;Id;KindDeq;IdDeq);$\lambda$$p$.\=$\langle$kind{-}rename(${\it ra}$;${\it rt}$;1of($p$))\+\+ \\[0ex]$,\,$${\it rx}$(2of($p$))$\rangle$;$\lambda$$f$,$s$,$v$. $f$(($s$$\,\circ\,$${\it rx}$),$v$) o \-\\[0ex]1of(2of(2of(2of(2of($M$)))))); \-\\[0ex]f\=pf{-}rename(product{-}deq(Knd;IdLnk;KindDeq;IdLnkDeq);$\lambda$$p$.\=$\langle$kind{-}rename(${\it ra}$;${\it rt}$;1of($p$))\+\+ \\[0ex]$,\,$2of($p$)$\rangle$;$\lambda$$L$.map\=($\lambda$$p$.\=$\langle$${\it rt}$(1of($p$))\+\+ \\[0ex]$,\,$\=$\lambda$$s$,$v$.\+ \\[0ex]2of($p$) \\[0ex](($s$$\,\circ\,$${\it rx}$) \\[0ex],$v$)$\rangle$ \-\-\\[0ex];$L$) o \-\-\\[0ex]1of(2of(2of(2of(2of(2of($M$))))))); \-\\[0ex]f\=pf{-}rename(IdDeq;${\it rx}$;$\lambda$$L$.map($\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);$L$) o\+ \\[0ex]1of(2of(2of(2of(2of(2of(2of($M$)))))))); \-\\[0ex]fpf{-}rename(product{-}deq(IdLnk;Id;IdLnkDeq;IdDeq);$\lambda$$p$.$\langle$1of($p$)$,\,$${\it rt}$(2of($p$))$\rangle$;$\lambda$$L$. \\[0ex]map($\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);$L$) o 1of(2of(2of(2of(2of(2of(2of(2of($M$))))))))); \\[0ex]f\=pf{-}rename(KindDeq;$\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);$\lambda$$L$.map(${\it rx}$;$L$) o\+ \\[0ex]1of(2of(2of(2of(2of(2of(2of(2of(2of($M$)))))))))); \-\\[0ex]fpf{-}rename(KindDeq;$\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);1of(\=2of(2of(2of(2of(2of(2of(2of(2of(2of(\+ \\[0ex]$M$))))))))))); \-\\[0ex]f\=pf{-}rename(IdDeq;${\it rx}$;$\lambda$$L$.map($\lambda$$k$.kind{-}rename(${\it ra}$;${\it rt}$;$k$);$L$) o\+ \\[0ex]1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of($M$))))))))))))) \-\- \end{tabbing}